

智能外控集成 LED 光源

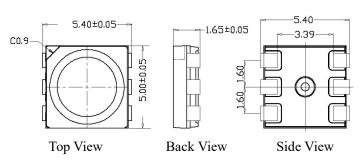
主要特点

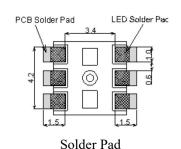
- 控制电路与RGB芯片集成在一个5050封装的元器件中,构成一个完整的外控像素点。
- 12V供电电压,有效降低整个像素点的工作电流,降低线路板压降,最大限度保证像素点在很远距离传输时达到良好的混光一致性。
- 内置信号整形电路,任何一个像素点收到信号后经过波形整形再输出,保证线路波形畸变不会累加。
- 每个像素点的三基色颜色可实现256级亮度显示,完成16777216种颜色的全真色彩显示。
- 端口扫描频率4KHz。
- 串行级联接口,能通过一根信号线完成数据的接收与解码。
- 任意两点传输距离在不超过5米时无需增加任何电路。
- 当刷新速率30帧/秒时,级联数不小于1024点。
- 数据发送速度可达800Kbps。
- 光的颜色高度一致,性价比高。

主要应用领域

- LED全彩发光字灯串,LED全彩软灯条硬灯条,LED护栏管。
- LED点光源, LED像素屏, LED异形屏。

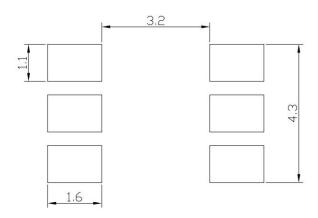
产品概述

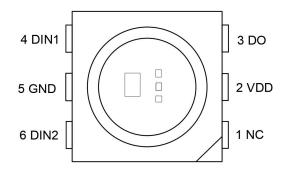

WS2815B是一个集控制电路与发光电路于一体的智能外控LED光源。其外型与一个5050LED灯珠相同,


每个元件即为一个像素点。像素点内部包含了智能数字接口数据锁存信号整形放大驱动电路、高精度的内部振荡器和高精度恒流控制模块,有效保证了像素点光的颜色高度一致。实现双路信号传输,在单个像素点损坏的情况下,不影响整体色彩的显示。

数据协议采用单线归零码的通讯方式,像素点在上电复位以后,DIN1端接受从控制器传输过来的数据,首先送过来的24bit数据被第一个像素点提取后,送到像素点内部的数据锁存器,剩余的数据经过内部整形处理电路整形放大后通过DO端口开始转发输出给下一个级联的像素点,每经过一个像素点的传输,信号减少24bit。像素点采用自动整形转发技术,使得该像素点的级联个数不受信号传送的限制,仅仅受限信号传输速度要求。

高达4KHz 的端口扫描频率,在高清摄像头的捕捉下都不会出现闪烁现象,非常适合高速移动产品的使用。 280µs以上的 RESET 时间,出现中断也不会引起误复位,可以支持更低频率,价格便宜的MCU。


机械尺寸(单位mm)



推荐焊盘尺寸(单位mm)

引脚图

引脚功能

序号	符号	管脚名	功 能 描 述
1	NC	空脚	空脚
2	VDD	LED 供电电源	电源供电脚,接 +12V 工作电源
3	DO	数据输出	控制数据信号输出脚
4	DIN1	数据1输入	控制数据信号 1 输入脚
5	GND	地线	信号接地和电源接地脚
6	DIN2	数据 2 输入	控制数据信号 2 输入脚

最大额定值(如无特殊说明,T_A=25℃,V_{SS}=0V)

参数	符号	范围	单位
电源电压	V_{DD}	+9.5~+13.5	V
功率	P	0.1~0.18	W
逻辑输入电压	V_{I}	-0.3~5.7	V
工作温度	Topt	-40~+65	°C
储存温度	Tstg	-40~+85	°C

智能外控集成 LED 光源

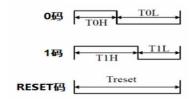
电气参数(如无特殊说明, T_A=25℃, V_{DD}=12V, V_{SS}=0V**)**

参数	符号	最小	典型	最大	单位	测试条件
输入电流	$I_{\rm I}$			±1	μΑ	$V_{I}=V_{DD}/V_{SS}$
高电平输入	$V_{ m IH}$	2.7		5.7	V	D _{IN} , SET
低电平输入	$V_{\rm IL}$	-0.3		1.5	V	D _{IN} , SET

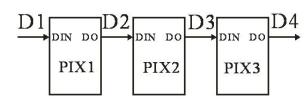
开关特性(如无特殊说明,T_A=25°C,V_{DD}=12V,V_{SS}=0V**)**

参数	符号	最小	典型	最大	单位	测试条件
传输延迟时间	t_{PLZ}			300	ns	CL=15pF, DIN→DOUT, RL=10KΩ
下降时间	t _{THZ}			120	μs	CL=300pF, OUTR/OUTG/OUTB
输入电容	CI			15	pF	

LED 特性参数


4 W.	55 U	文玉 力.		静态电流	测试条件		
参数	符号	颜色	最小值	典型值	最大值	单位	(工作电流)
47 A		Red	200	310	400		
发光	IV	Green	600	800	1000	mcd	12mA
强度		Blue	150	190	300		
		Red	620	623	630	nm	12mA
波长	λd	Green	510	520	520		
		Blue	465	471	475		

数据传输时间


ТОН	0 码, 高电平时间	220ns~380ns
T1H	1码, 高电平时间	580ns~840ns
TOL	0码, 低电平时间	900ns~5000ns
T1L	1码, 低电平时间	600ns~5000ns
RES	帧单位,低电平时间	280μs 以上
T _{DATA}	数据周期	≥1.25us

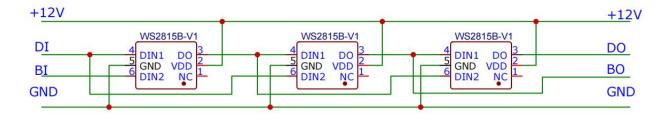
时序波形图

输入码型:


连接方法:

智能外控集成 LED 光源

数据传输方法

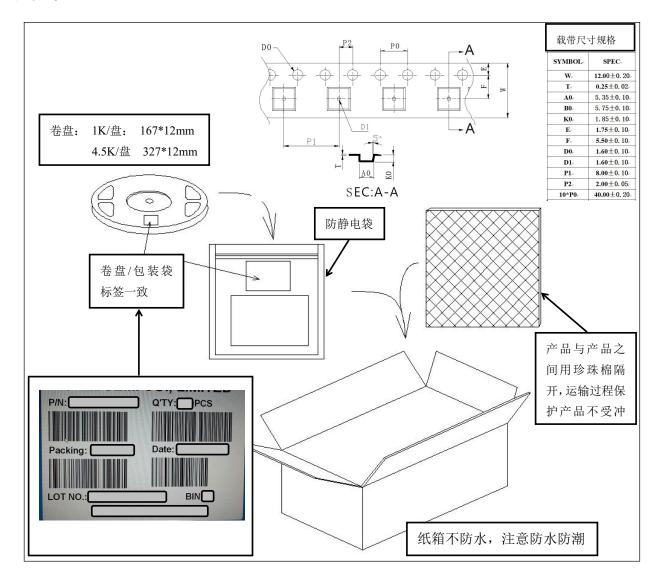

注: 其中 D1 为 MCU 端发送的数据, D2、D3、D4 为级联电路自动整形转发的数据。

24bit 数据结构

	G7	G6	G5	G4	G3	G2	G1	R0	R7	R6	R5	R4	R3	R2	R1	R0	В7	В6	В5	B4	В3	B2	B1	В0
--	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

注: 高位先发, 按照 GRB 的顺序发送数据。

典型应用电路


说明:

- 1. DIN1 是主输入信号,DIN2 是辅助输入信号。正常情况下,LED 从 DIN1 提取信号;当中间某一颗 LED 损坏时,后一颗 LED 从 DIN2 提取信号,不影响后面 LED 的信号传输。
 - 2. 应用时,第一颗 LED 的 DIN2 引脚不可悬空,建议接 GND。

智能外控集成 LED 光源

包装标准

表面贴装型 LED 使用注意事项

1. 描述:

通常 LED 也像其它的电子元件一样有着相同的使用方法,为了让客户更好地使用华彩威的 LED 产品,请参看下面的 LED 保护预防措施。

2. 注意事项:

2.1. 灰尘与清洁

LED 的表面是采用改性环氧胶封装的,环氧胶对于 LED 的光学系统和抗老化性能都起到很好的保护作用。环氧胶易粘灰尘,保持作业环境的洁净。当 LED 表面有一定限度内的尘埃,也不会影响到发光亮度,但我们仍应避免尘埃落到 LED 表面。打开包装袋的就优先使用,安装过 LED 的组件应存放在干净的容器中,在 LED 表面需要清洁时,如果使用三氨乙烯或者丙酮等溶液会出现使 LED 表面溶解等现象,不可使用具用溶解性的溶液清洁 LED,可使用一此异丙基的溶液,在使用任何清洁溶液之前都应确认是否会对 LED 有溶解作用;请不要用超声波的方法清洁 LED,如果产品必须使用超声波,那么就要评估影响 LED 的一些参数,如超声波功率,烘烤的时间和装配的条件等,在清洁之前必须试运行,确认是否会影响到 LED。

2.2. 防潮处理

LED 属于湿敏元件,将 LED 包装在铝膜的袋中是为了避免 LED 在运输和储存时吸收湿气,在包装袋中放有干燥剂,以吸收湿气。如果 LED 吸收了水气,那么在 LED 过回流焊时,水气就会蒸发而膨胀,有可能使胶体与支架脱离以及损害 LED 的光学系统。由于这个原因,防湿包装是为了使包装袋内避免有湿气,但通常保护时间仅能维持 $1\sim2$ 个月。此款产品防潮等级 (MSL)为: 5a. SMT 时请参照 IPC/JEDECJ-STD-020 规定的材料防潮等级 (MSL) 定义进行 MSL 管控。

防潮等级	包装拆封后车间寿命						
	时间	条件					
LEVEL1	无限制	≤30°C/85%RH					
LEVEL2	1年	≤30°C/60%RH					
LEVEL2a	4 周	≤30°C/60%RH					
LEVEL3	168 小时	≤30°C/60%RH					
LEVEL4	72 小时	≤30°C160%RH					
LEVEL5	48 小时	≤30°C/60%RH					
LEVEL5a	24 小时	≤30°C/60%RH					
LEVEL6	取出即用	≤30°C/60%RH					

2.3 SMT 贴片要求:

- 2.3.1 建议 LED 在 SMT 前拆袋,整卷放入烤箱中进行除湿干燥 $(70\sim75$ ℃烘烤 \geq 24H);
- 2.3.2 产品从烤箱中取出至高温焊接完成(包含多次回流焊、浸锡、波峰焊、加热维修等高温操作/作业),时间段控制在 24 内(在 T<30℃, RH<60%条件下);
 - 2.3.3 LED 贴件在印刷锡膏后的 PCBA 上,应尽快完成 SMT,建议不超过 1H;
- 2.3.4 生产剩余、机台抛料、维修用料等散料 LED,若长时间暴露在空气中,不可直接使用,建议进行除湿于燥后再被使用。整卷烘烤: $70\sim75$ ℃* \geq 24H 或 散料烘烤: 120℃*4H。

3. 焊接

表贴应用 LED 应符合 JEDECJ-STD-020C 标准,作为一般指导原则,建议遵循所用焊锡膏制造商推荐的焊接温度曲线,或使用我司如下推荐的焊接温度曲线。

温度曲线描述	范围
30℃~150℃预热斜率	1~4 ℃/s
30℃~150℃预热时间	60∼120 s
150℃~200℃恒温斜率	0~3 °C/s
150℃~200℃恒温时间	60∼120 s
液相温度	217°C
峰值温度	245℃
回流焊斜率	0~3 ℃/s
回流焊时间	45-90 s
降温速率	-4~0 ℃/s
室温至峰值温度停留时间	<6 min

注:以上所有温度是指在封装本体焊点表面测得的温度。

4. 产品配装过程注意事项

1. 通过使用适当的工具从材料侧面夹取	2. 不可直接用手或尖锐 金属压胶体表面,它可能 会损坏内部电路	3. 不可将模组材料堆积在一起,它可能会损坏内部电路	4. 不可用在 PH<7 的酸性场所
			<pm7< td=""></pm7<>

智能外控集成 LED 光源

文件更改记录

版本号	状态	修改内容概要	修订日期	修订人	批准人
V1.0	N	新建	20180820	沈金国	尹华平
V1.1	M	修正亮度值,时序范围值,贴片注意事项部份内容	20190507	沈金国	尹华平
V1.2	M	修改产品描述	20200519	沈金国	尹华平
V1.3	M	修改产品描述	20210401	董乐	尹华平
V1.4	M	修改使用注意事项	20220531	余行辉	尹华平
V2.0	M	驱动IC升级换代,取消内置电容,参数调整	20221020	余行辉	尹华平
V2.1	M	增加LED功率描述	20221201	余行辉	尹华平
V2.2	M	调整时序要求	20221221	胡锦	余行辉
V2.3	A	增加典型应用电路	20250418	陈永昭	尹华平
V2.4	A	增加推荐焊盘尺寸和应用电路说明	20250701	陈永昭	尹华平

注: 初始版本号V1.0; 每次修订批准后,版本号顺序加"0.1";

状态包括: N--新建, A--增加, M--修改, D--删除。